Inference for double Pareto lognormal queues with applications
Josefa Ramírez Cobo and
Simon P. Wilson
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this article we describe a method for carrying out Bayesian inference for the double Pareto lognormal (dPlN) distribution which has recently been proposed as a model for heavy-tailed phenomena. We apply our approach to inference for the dPlN/M/1 and M/dPlN/1 queueing systems. These systems cannot be analyzed using standard techniques due to the fact that the dPlN distribution does not posses a Laplace transform in closed form. This difficulty is overcome using some recent approximations for the Laplace transform for the Pareto/M/1 system. Our procedure is illustrated with applications in internet traffic analysis and risk theory.
Keywords: Heavy; tails; Bayesian; inference; Queueing; theory (search for similar items in EconPapers)
Date: 2008-02
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 48cb4df62387/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws080402
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().