The econometrics of randomly spaced financial data: a survey
Andre Monteiro
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
This paper provides an introduction to the problem of modeling randomly spaced longitudinal data. Although Point Process theory was developed mostly in the sixties and early seventies, only in the nineties did this field of Probability theory attract the attention of researchers working in Financial Econometrics. The large increase, observed since, in the number of different classes of Econometric models for dealing with financial duration data, has been mostly due to the increased availability of both trade-by-trade data from equity markets and daily default and rating migration data from credit markets. This paper provides an overview of the main Econometric models available in the literature for dealing with what is sometimes called tick data. Additionally, a synthesis of the basic theory underlying these models is also presented. Finally, a new theorem dealing with the identifiability of latent intensity factors from point process data, jointly with a heuristic proof, is introduced.
Keywords: Tick; data; Financial; duration; models; Point; processes; Migration; models (search for similar items in EconPapers)
JEL-codes: C22 C32 C34 C41 G10 (search for similar items in EconPapers)
Date: 2009-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 6165d4f71d86/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws097924
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().