Time series segmentation by Cusum, AutoSLEX and AutoPARM methods
Ana Laura Badagian Baharian,
Regina Kaiser Remiro and
Daniel Peña
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
Time series segmentation has many applications in several disciplines as neurology, cardiology, speech, geology and others. Many time series in this fields do not behave as stationary and the usual transformations to linearity cannot be used. This paper describes and evaluates different methods for segmenting non-stationary time series. We propose a modification of the algorithm in Lee et al. (2003) which is designed to searching for a unique change in the parameters of a time series, in order to find more than one change using an iterative procedure. We evaluate the performance of three approaches for segmenting time series: AutoSLEX (Ombao et al., 2002), AutoPARM (Davis et al., 2006) and the iterative cusum method mentioned above and referred as ICM. The evaluation of each methodology consists of two steps. First, we compute how many times each procedure fails in segmenting stationary processes properly. Second, we analyze the effect of different change patterns by counting how many times the corresponding methodology correctly segments a piecewise stationary process. ICM method has a better performance than AutoSLEX for piecewise stationary processes. AutoPARM presents a very satisfactory behaviour. The performance of the three methods is illustrated with time series datasets of neurology and speech.
Keywords: Time; series; segmentation; AutoSLEX; AutoPARM; Cusum; Methods (search for similar items in EconPapers)
Date: 2009-12
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... bafc3e9caf75/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws098025
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().