Bayesian modelling of bacterial growth for multiple populations
Ana Paula Palacios and
Emiliano Quinto
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
Bacterial growth models are commonly used for the prediction of microbial safety and the shelf life of perishable foods. Growth is affected by several environmental factors such as temperature, acidity level and salt concentration. In this study, we develop two models to describe bacterial growth for multiple populations under both equal and different environmental conditions. Firstly, a semi-parametric model based on the Gompertz equation is proposed. Assuming that the parameters of the Gompertz equation may vary in relation to the running conditions under which the experiment is performed, we use feed forward neural networks to model the influence of these environmental factors on the growth parameters. Secondly, we propose a more general model which does not assume any underlying parametric form for the growth function. Thus, we consider a neural network as a primary growth model which includes the influencing environmental factors as inputs to the network. One of the main disadvantages of neural networks models is that they are often very difficult to tune which complicates fitting procedures. Here, we show that a simple, Bayesian approach to fitting these models can be implemented via the software package WinBugs. Our approach is illustrated using real experimental Listeria Monocytogenes growth data.
Keywords: Bacterial; population; modeling; Growth; functions; Neural; networks; Bayesian; inference (search for similar items in EconPapers)
Date: 2012-06
New Economics Papers: this item is included in nep-cmp, nep-env and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 2dd3bf824af4/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws121610
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().