EconPapers    
Economics at your fingertips  
 

A p-median problem with distance selection

Stefano Benati and Sergio García

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: This paper introduces an extension of the p-median problem and its application to clustering, in which the distance/dissimilarity function between units is calculated as the distance sum on the q most important variables. These variables are to be chosen from a set of m elements, so a new combinatorial feature has been added to the problem, that we call the p-median model with distance selection. This problem has its origin in cluster analysis, often applied to sociological surveys, where it is common practice for a researcher to select the q statistical variables they predict will be the most important in discriminating the statistical units before applying the clustering algorithm. Here we show how this selection can be formulated as a non-linear mixed integer optimization mode and we show how this model can be linearized in several different ways. These linearizations are compared in a computational study and the results outline that the radius formulation of the p-median is the most efficient model for solving this problem.

Keywords: p-median; problem; Distance; selection; Radius; formulation (search for similar items in EconPapers)
Date: 2012-06
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 1cfc5c6a52c1/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws121913

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2025-03-19
Handle: RePEc:cte:wsrepe:ws121913