EconPapers    
Economics at your fingertips  
 

Independent components techniques based on kurtosis for functional data analysis

Francisco J. Prieto and Carolina Rendón
Authors registered in the RePEc Author Service: Daniel Peña

DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística

Abstract: The motivation for this paper arises from an article written by Peña et al. [40] in 2010,where they propose the eigenvectors associated with the extreme values of a kurtosismatrix as interesting directions to reveal the possible cluster structure of a dataset. In recent years many research papers have proposed generalizations of multivariatetechniques to the functional data case. In this paper we introduce an extension of themultivariate kurtosis for functional data, and we analyze some of its properties. Inparticular, we explore if our proposal preserves some of the properties of the kurtosisprocedures applied to the multivariate case, regarding the identification of outliers andcluster structures. This analysis is conducted considering both theoretical andexperimental properties of our proposal

Keywords: Functional; Data; Analysis; Functional; Kurtosis; Cluster; Analysis; Kurtosis; Operator (search for similar items in EconPapers)
Date: 2014-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 61531a4753c7/content (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws141006

Access Statistics for this paper

More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de Estadística
Bibliographic data for series maintained by Ana Poveda ().

 
Page updated 2025-03-19
Handle: RePEc:cte:wsrepe:ws141006