Ranking Edges and Model Selection in High-Dimensional Graphs
Rubén Zamar
DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Abstract:
In this article we present an approach to rank edges in a network modeled through a Gaussian Graphical Model. We obtain a path of precision matrices such that, in each step of the procedure, an edge is added. We also guarantee that the matrices along the path are symmetric and positive definite. To select the edges, we estimate the covariates that have the largest absolute correlation with a node conditional to the set of edges estimated in previous iterations. Simulation studies show that the procedure is able to detect true edges until the sparsity level of the population network is recovered. Moreover, it can add efficiently true edges in the first iterations avoiding to enter false ones. We show that the top-rank edges are associated with the largest partial correlated variables. Finally, we compare the graph recovery performance with that of Glasso under different settings.
Keywords: Precision; Matrix; Covariance; selection; Gaussian; Graphical; Models; Edge; Ranking; Least; Angle; Regression; High-dimensional; statistics (search for similar items in EconPapers)
Date: 2015-05-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://e-archivo.uc3m.es/rest/api/core/bitstreams ... 1a1584baf850/content (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cte:wsrepe:ws1511
Access Statistics for this paper
More papers in DES - Working Papers. Statistics and Econometrics. WS from Universidad Carlos III de Madrid. Departamento de EstadÃstica
Bibliographic data for series maintained by Ana Poveda ().