Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Lévy copulas
Benjamin Avanzi,
Jamie Tao,
Bernard Wong and
Xinda Yang
Annals of Actuarial Science, 2016, vol. 10, issue 1, 87-117
Abstract:
The class of spectrally positive Lévy processes is a frequent choice for modelling loss processes in areas such as insurance or operational risk. Dependence between such processes (e.g. between different lines of business) can be modelled with Lévy copulas. This approach is a parsimonious, efficient and flexible method which provides many of the advantages akin to distributional copulas for random variables. Literature on Lévy copulas seems to have primarily focussed on bivariate processes. When multivariate settings are considered, these usually exhibit an exchangeable dependence structure (whereby all subset of the processes have an identical marginal Lévy copula). In reality, losses are not always associated in an identical way, and models allowing for non-exchangeable dependence patterns are needed. In this paper, we present an approach which enables the development of such models. Inspired by ideas and techniques from the distributional copula literature we investigate the procedure of nesting Archimedean Lévy copulas. We provide a detailed analysis of this construction, and derive conditions under which valid multivariate (nested) Lévy copulas are obtained. Our results are discussed and illustrated, notably with an example of model fitting to data.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:10:y:2016:i:01:p:87-117_00
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().