EconPapers    
Economics at your fingertips  
 

Comparing the riskiness of dependent portfolios via nested L-statistics

Ranadeera G.M. Samanthi, Wei Wei and Vytaras Brazauskas

Annals of Actuarial Science, 2017, vol. 11, issue 2, 237-252

Abstract: A non-parametric test based on nested L-statistics and designed to compare the riskiness of portfolios was introduced by Brazauskas et al. (2007). Its asymptotic and small-sample properties were primarily explored for independent portfolios, though independence is not a required condition for the test to work. In this paper, we investigate how performance of the test changes when insurance portfolios are dependent. To achieve that goal, we perform a simulation study where we consider three different risk measures: conditional tail expectation, proportional hazards transform, and mean. Further, three portfolios are generated from exponential, Pareto, and lognormal distributions, and their interdependence is modelled with the three-dimensional t and Gaussian copulas. It is found that the presence of strong positive dependence (comonotonicity) makes the test very liberal for all the risk measures under consideration. For types of dependence that are more common in an insurance environment, the effect of dependence is less dramatic but the results are mixed, i.e., they depend on the chosen risk measure, sample size, and even on the test’s significance level. Finally, we illustrate how to incorporate such findings into sensitivity analysis of the decisions. The risks we analyse represent tornado damages in different regions of the United States from 1890 to 1999.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:11:y:2017:i:02:p:237-252_00

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:anacsi:v:11:y:2017:i:02:p:237-252_00