EconPapers    
Economics at your fingertips  
 

Application of bivariate negative binomial regression model in analysing insurance count data

Feng Liu and David Pitt

Annals of Actuarial Science, 2017, vol. 11, issue 2, 390-411

Abstract: In this paper we analyse insurance claim frequency data using the bivariate negative binomial regression (BNBR) model. We use general insurance data on claims from simple third-party liability insurance and comprehensive insurance. We find that bivariate regression, with its capacity for modelling correlation between the two observed claim counts, provides both a superior fit and out-of-sample prediction compared with the more common practice of fitting univariate negative binomial regression models separately to each claim type. Noting the complexity of BNBR models and their potential for a large number of parameters, we explore the use of model shrinkage methodology, namely the least absolute shrinkage and selection operator (Lasso) and ridge regression. We find that models estimated using shrinkage methods outperform the ordinary likelihood-based models when being used to make predictions out-of-sample. We find that the Lasso performs better than ridge regression as a method of shrinkage.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:11:y:2017:i:02:p:390-411_00

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:anacsi:v:11:y:2017:i:02:p:390-411_00