EconPapers    
Economics at your fingertips  
 

A review on Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes

Jiwook Jang and Rosy Oh

Annals of Actuarial Science, 2021, vol. 15, issue 3, 623-644

Abstract: The Poisson process is an essential building block to move up to complicated counting processes, such as the Cox (“doubly stochastic Poisson”) process, the Hawkes (“self-exciting”) process, exponentially decaying shot-noise Poisson (simply “shot-noise Poisson”) process and the dynamic contagion process. The Cox process provides flexibility by letting the intensity not only depending on time but also allowing it to be a stochastic process. The Hawkes process has self-exciting property and clustering effects. Shot-noise Poisson process is an extension of the Poisson process, where it is capable of displaying the frequency, magnitude and time period needed to determine the effect of points. The dynamic contagion process is a point process, where its intensity generalises the Hawkes process and Cox process with exponentially decaying shot-noise intensity. To facilitate the usage of these processes in practice, we revisit the distributional properties of the Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes. We provide simulation algorithms for these processes, which would be useful to statistical analysis, further business applications and research. As an application of the compound processes, numerical comparisons of value-at-risk and tail conditional expectation are made.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:15:y:2021:i:3:p:623-644_9

Access Statistics for this article

More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:anacsi:v:15:y:2021:i:3:p:623-644_9