A NEYMAN-PEARSON PERSPECTIVE ON OPTIMAL REINSURANCE WITH CONSTRAINTS
Ambrose Lo
ASTIN Bulletin, 2017, vol. 47, issue 2, 467-499
Abstract:
The formulation of optimal reinsurance policies that take various practical constraints into account is a problem commonly encountered by practitioners. In the context of a distortion-risk-measure-based optimal reinsurance model without moral hazard, this article introduces and employs a variation of the Neyman–Pearson Lemma in statistical hypothesis testing theory to solve a wide class of constrained optimal reinsurance problems analytically and expeditiously. Such a Neyman–Pearson approach identifies the unit-valued derivative of each ceded loss function as the test function of an appropriate hypothesis test and transforms the problem of designing optimal reinsurance contracts to one that resembles the search of optimal test functions achieved by the classical Neyman–Pearson Lemma. As an illustration of the versatility and superiority of the proposed Neyman–Pearson formulation, we provide complete and transparent solutions of several specific constrained optimal reinsurance problems, many of which were only partially solved in the literature by substantially more difficult means and under extraneous technical assumptions. Examples of such problems include the construction of the optimal reinsurance treaties in the presence of premium budget constraints, counterparty risk constraints and the optimal insurer–reinsurer symbiotic reinsurance treaty considered recently in Cai et al. (2016).
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:47:y:2017:i:02:p:467-499_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().