BEYOND THE PEARSON CORRELATION: HEAVY-TAILED RISKS, WEIGHTED GINI CORRELATIONS, AND A GINI-TYPE WEIGHTED INSURANCE PRICING MODEL
Edward Furman and
Ričardas Zitikis
ASTIN Bulletin, 2017, vol. 47, issue 3, 919-942
Abstract:
Gini-type correlation coefficients have become increasingly important in a variety of research areas, including economics, insurance and finance, where modelling with heavy-tailed distributions is of pivotal importance. In such situations, naturally, the classical Pearson correlation coefficient is of little use. On the other hand, it has been observed that when light-tailed situations are of interest, and hence when both the Gini-type and Pearson correlation coefficients are well defined and finite, these coefficients are related and sometimes even coincide. In general, understanding how these correlation coefficients are related has been an illusive task. In this paper, we put forward arguments that establish such a connection via certain regression-type equations. This, in turn, allows us to introduce a Gini-type weighted insurance pricing model that works in heavy-tailed situations and thus provides a natural alternative to the classical capital asset pricing model. We illustrate our theoretical considerations using several bivariate distributions, such as elliptical and those with heavy-tailed Pareto margins.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:47:y:2017:i:03:p:919-942_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().