EconPapers    
Economics at your fingertips  
 

INSTRUMENTAL VARIABLE ESTIMATION IN A DATA RICH ENVIRONMENT

Jushan Bai and Serena Ng ()

Econometric Theory, 2010, vol. 26, issue 6, 1577-1606

Abstract: We consider estimation of parameters in a regression model with endogenous regressors. The endogenous regressors along with a large number of other endogenous variables are driven by a small number of unobservable exogenous common factors. We show that the estimated common factors can be used as instrumental variables and they are more efficient than the observed variables in our framework. Whereas standard optimal generalized method of moments estimator using a large number of instruments is biased and can be inconsistent, the factor instrumental variable estimator (FIV) is shown to be consistent and asymptotically normal, even if the number of instruments exceeds the sample size. Furthermore, FIV remains consistent even if the observed variables are invalid instruments as long as the unobserved common components are valid instruments. We also consider estimating panel data models in which all regressors are endogenous but share exogenous common factors. We show that valid instruments can be constructed from the endogenous regressors. Although single equation FIV requires no bias correction, the faster convergence rate of the panel estimator is such that a bias correction is necessary to obtain a zero-centered normal distribution.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (105)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:06:p:1577-1606_99

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-04-07
Handle: RePEc:cup:etheor:v:26:y:2010:i:06:p:1577-1606_99