PARAMETER ESTIMATION IN NONLINEAR AR–GARCH MODELS
Mika Meitz () and
Pentti Saikkonen
Econometric Theory, 2011, vol. 27, issue 6, 1236-1278
Abstract:
This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a general nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first-order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. We do not require the rescaled errors to be independent, but instead only to form a stationary and ergodic martingale difference sequence. Strong consistency and asymptotic normality of the global Gaussian quasi-maximum likelihood (QML) estimator are established under conditions comparable to those recently used in the corresponding linear case. To the best of our knowledge, this paper provides the first results on consistency and asymptotic normality of the QML estimator in nonlinear autoregressive models with GARCH errors.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Parameter estimation in nonlinear AR–GARCH models (2010) 
Working Paper: Parameter estimation in nonlinear AR-GARCH models (2008) 
Working Paper: Parameter Estimation in Nonlinear AR-GARCH Models (2008) 
Working Paper: Parameter estimation in nonlinear AR-GARCH models (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:27:y:2011:i:06:p:1236-1278_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().