INFERENCE IN INSTRUMENTAL VARIABLE MODELS WITH HETEROSKEDASTICITY AND MANY INSTRUMENTS
Federico Crudu (),
Giovanni Mellace and
Zsolt Sándor
Econometric Theory, 2021, vol. 37, issue 2, 281-310
Abstract:
This paper proposes novel inference procedures for instrumental variable models in the presence of many, potentially weak instruments that are robust to the presence of heteroskedasticity. First, we provide an Anderson–Rubin-type test for the entire parameter vector that is valid under assumptions weaker than previously proposed Anderson–Rubin-type tests. Second, we consider the case of testing a subset of parameters under the assumption that a consistent estimator for the parameters not under test exists. We show that under the null, the proposed statistics have Gaussian limiting distributions and derive alternative chi-square approximations. An extensive simulation study shows the competitive finite sample properties in terms of size and power of our procedures. Finally, we provide an empirical application using college proximity instruments to estimate the returns to education.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Inference in instrumental variables models with heteroskedasticity and many instruments (2020) 
Working Paper: Inference in instrumental variables models with heteroskedasticity and many instruments (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:37:y:2021:i:2:p:281-310_3
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().