Measuring Skewness Premia
Hugues Langlois ()
No 1256, HEC Research Papers Series from HEC Paris
Abstract:
We provide a new methodology to empirically investigate the respective roles of systematic and idiosyncratic skewness in explaining expected stock returns. Forming a risk factor that captures systematic skewness risk and forming idiosyncratic skewness sorted portfolios only require the ordering of stocks with respect to each skewness measure. Accordingly, we use a large number of predictors to forecast the cross-sectional ranks of systematic and idiosyncratic skewness which are considerably easier to predict than their actual values. Compared to other measures of ex ante systematic skewness, our forecasts create a significant spread in ex post systematic skewness. A predicted systematic skewness risk factor carries a significant risk premium that ranges from 7% to 12% per year and is robust to the inclusion of downside beta, size, value, momentum, profitability, and investment factors. In contrast to systematic skewness, the role of idiosyncratic skewness in pricing stocks is less robust. Finally, we document how the determinants of systematic skewness differ from those of idiosyncratic skewness.
Keywords: Systematic skewness; coskewness; idiosyncratic skewness; large panel regression; forecasting (search for similar items in EconPapers)
JEL-codes: G12 (search for similar items in EconPapers)
Pages: 47 pages
Date: 2018-03-15, Revised 2019-05-29
New Economics Papers: this item is included in nep-knm and nep-rmg
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3141416 Full text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ebg:heccah:1256
Access Statistics for this paper
More papers in HEC Research Papers Series from HEC Paris HEC Paris, 78351 Jouy-en-Josas cedex, France. Contact information at EDIRC.
Bibliographic data for series maintained by Antoine Haldemann ().