Tyler Shape Depth
Davy Paindaveine and
Germain Van Bever
Working Papers ECARES from ULB -- Universite Libre de Bruxelles
Abstract:
In many problems from multivariate analysis (principal component analysis, testing for sphericity, etc.), the parameter of interest is a shape matrix, that is, a normalised version of the corresponding scatter or dispersion matrix. In this paper, we propose a depth concept for shape matrices which is of a sign nature, in the sense that it involves data points only through their directions from the center of the distribution. We use the terminology Tyler shape depth since the resulting estimator of shape — namely, the deepest shape matrix — is the depth-based counterpart of the celebrated M-estimator of shape from Tyler (1987). We in- vestigate the invariance, quasi-concavity and continuity properties of Tyler shape depth, as well as the topological and boundedness properties of the corresponding depth regions. We study existence of a deepest shape matrix and prove Fisher consistency in the elliptical case. We derive a Glivenko-Cantelli-type result and establish the almost sure consistency of the deepest shape matrix estimator. We also consider depth-based tests for shape and investigate their finite-sample per- formances through simulations. Finally, we illustrate the practical relevance of the proposed depth concept on a real data example.
Keywords: Elliptical distribution; Robustness; Shape matrix; Statistical depth; Test for sphericity (search for similar items in EconPapers)
Pages: 27 p.
Date: 2017-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published by:
Downloads: (external link)
https://dipot.ulb.ac.be/dspace/bitstream/2013/2550 ... E_VANBEVER-Tyler.pdf Full text for the whole work, or for a work part (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eca:wpaper:2013/255000
Ordering information: This working paper can be ordered from
http://hdl.handle.ne ... lb.ac.be:2013/255000
Access Statistics for this paper
More papers in Working Papers ECARES from ULB -- Universite Libre de Bruxelles Contact information at EDIRC.
Bibliographic data for series maintained by Benoit Pauwels ().