Improved Coefficient and Variance Estimation in Stable First-Order Dynamic Regression Models
Jan Kiviet and
Garry Phillips
No 631, Econometric Society World Congress 2000 Contributed Papers from Econometric Society
Abstract:
In dynamic regression models the least-squares coefficient estimators are biased in finite samples, and so are the usual estimators for the disturbance variance and for the variance of the coefficient estimators. By deriving the expectation of the initial terms in an expansion of the usual expression for the asymptotic coefficient variance estimator and by comparing these with an approximation to the true variance we find an approximation to the bias in variance estimation from which a bias corrected estimator for the variance readily follows. This is also achieved for a bias corrected coefficient estimator and allows to compare analytically the second-order approximation to the mean squared error of the least-squares estimator and its counterpart for the first-order bias corrected coefficient estimator. Two rather strong results on efficiency gains through bias correction for AR(1) models follow. Illustrative simulation results on the magnitude of bias in coefficient and variance estimation and on the scope for effective bias correction and efficiency improvement are presented for some relevant particular cases of the ARX(1) class of models.
Date: 2000-08-01
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://fmwww.bc.edu/RePEc/es2000/0631.pdf main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:wc2000:0631
Access Statistics for this paper
More papers in Econometric Society World Congress 2000 Contributed Papers from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().