EconPapers    
Economics at your fingertips  
 

Stochastic frontier models with dependent error components

Murray D. Smith

Econometrics Journal, 2008, vol. 11, issue 1, 172-192

Abstract: of the stochastic frontier model are assumed to be independent random variables. By employing the copula approach to statistical modelling, the joint behaviour of U and V can be parametrized thereby allowing the data the opportunity to determine the adequacy of the independence assumption. In this context, three examples of the copula approach are given: the first is algebraic (the Logistic-Exponential stochastic frontier model with margins bound by the Farlie--Gumbel--Morgenstern copula), the second uses a cross-section of cost data sampled from the US electrical power industry and the third constructs a model for panel data that is then used to conduct a Monte Carlo exercise in which estimator bias is examined when the dependence structure is incorrectly ignored. Copyright Royal Economic Society 2007

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (49)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:11:y:2008:i:1:p:172-192

Ordering information: This journal article can be ordered from
http://www.ectj.org

Access Statistics for this article

Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms

More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().

 
Page updated 2025-03-19
Handle: RePEc:ect:emjrnl:v:11:y:2008:i:1:p:172-192