Stochastic frontier models with dependent error components
Murray D. Smith
Econometrics Journal, 2008, vol. 11, issue 1, 172-192
Abstract:
of the stochastic frontier model are assumed to be independent random variables. By employing the copula approach to statistical modelling, the joint behaviour of U and V can be parametrized thereby allowing the data the opportunity to determine the adequacy of the independence assumption. In this context, three examples of the copula approach are given: the first is algebraic (the Logistic-Exponential stochastic frontier model with margins bound by the Farlie--Gumbel--Morgenstern copula), the second uses a cross-section of cost data sampled from the US electrical power industry and the third constructs a model for panel data that is then used to conduct a Monte Carlo exercise in which estimator bias is examined when the dependence structure is incorrectly ignored. Copyright Royal Economic Society 2007
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (49)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ect:emjrnl:v:11:y:2008:i:1:p:172-192
Ordering information: This journal article can be ordered from
http://www.ectj.org
Access Statistics for this article
Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms
More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().