Environmental implications of using ‘underutilised agricultural land’ for future bioenergy crop production
Saori Miyake,
Carl Smith,
Ann Peterson,
Clive McAlpine,
Marguerite Renouf and
David Waters
Agricultural Systems, 2015, vol. 139, issue C, 180-195
Abstract:
Land use change effects have emerged as an important area of global bioenergy sustainability policy and research. ‘Underutilised agricultural land’ has been previously proposed as a potential option for future bioenergy feedstock production that may minimise the environmental and social challenges of land use change. However, this has not been well tested to date. Our research aims to evaluate whether conversion of these lands to selected bioenergy crops can lead to favourable environmental outcomes for eight indicators related to water quantity and quality, and terrestrial biodiversity. A spatially explicit evaluation framework based on GIS was developed to quantify the environmental effects of land use change. The land use change scenarios, established in a case study region in subtropical Queensland, Australia, were for the production of Pongamia and two native eucalypt species (Spotted gum and Chinchilla white gum) on (i) existing ‘underutilised’ open grazing areas, (ii) existing ‘underutilised’ forested grazing areas, and (iii) all available ‘underutilised agricultural land’ in the case study catchment, under both low and high management intensity. We found that environmental benefits can be gained in scenarios where (i) open grazing areas (e.g., pastures) were used; (ii) native woody perennial bioenergy crops were planted; and (iii) the new plantations were under low management intensity. Other scenarios resulted in reduced environmental outcomes. The results flagged the importance of careful planning and management strategies, and the need for future bioenergy policy to provide more detailed prescriptions concerning land use planning and management if ‘underutilised agricultural lands’ are used for future bioenergy crop production.
Keywords: Marginal land; Degraded land; Grazing; Environmental sustainability; Pongamia; Land use change; Eucalypts; Biodiversity; Water quality; Hydrology; Abandoned agricultural land (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X15300019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:139:y:2015:i:c:p:180-195
DOI: 10.1016/j.agsy.2015.06.010
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().