EconPapers    
Economics at your fingertips  
 

Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using APSIM

Xuan Yang, Lina Zheng, Qian Yang, Zikui Wang, Song Cui and Yuying Shen

Agricultural Systems, 2018, vol. 166, issue C, 111-123

Abstract: Information relating to the accurate quantification of the impacts of long-term conservation tillage practices on the crop yields and water use patterns of rainfed rotational cropping systems under global climate change is urgently required. The objectives of this study were to calibrate and evaluate APSIM (Agriculture Production System sIMulator) to accurately predict crop growth and development of a maize-winter wheat-soybean rotation, and to investigate the effects of conservation tillage on grain yield, water productivity and evapotranspiration on the Loess Plateau of China. This study integrated APSIM-based simulation modelling and field-level data collected from a maize-winter wheat-soybean rotation system under conventional tillage (CT) and no tillage with stubble retention of the previous crop (NTR) in Xifeng, Gansu, China. APSIM was successfully calibrated and evaluated using the root mean square error (RMSE) and index of agreement (d), indicating good performance on simulating the crop yield, dry matter biomass and soil water dynamic of the three crops for both CT and NTR treatments. Under the long-term scenario simulations (50 a, 25 rotation phases in total), the results showed that NTR improved soil water storage by 0–159 mm (72 mm on average; P < 0.01) of soil water storage before each rotation phase. The grain yield and biomass of winter wheat were significantly improved under the NTR treatment (1805 and 4309 kg ha−1 on average), but changes in maize or soybean were not significant (P > 0.05). On a system basis, the NTR treatment had significantly greater plant transpiration (Tc) and Tc/system water supply (WSsys), but lower soil evaporation (Es), evapotranspiration (ET), and ET/WSsys than treatment CT did. Additionally, Tc and Es for maize production were not significantly different between the two treatments. Grain yield water productivity (WPY) and biomass water productivity (WPB) in wheat and soybean were substantially improved by 1.9–8.0 kg ha−1 mm−1 (P < 0.05) under treatment NTR. In general, we advocated that conservation tillage has indicated great potential for improving crop/water productivity and soil water storage under rainfed conditions in the semiarid Loess Plateau region of China.

Keywords: Loess Plateau; APSIM; Conservation tillage; Crop yield; Soil water; Evapotranspiration (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X18301203
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:166:y:2018:i:c:p:111-123

DOI: 10.1016/j.agsy.2018.08.005

Access Statistics for this article

Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen

More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agisys:v:166:y:2018:i:c:p:111-123