Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina
Franco Bilotto,
Paulo Recavarren,
Ronaldo Vibart and
Claudio F. Machado
Agricultural Systems, 2019, vol. 176, issue C
Abstract:
Beef grazing systems need to improve their environmental sustainability while increasing productivity to meet future demand. In a context of climate and prices variability, the main aim of our study was to explore the current trend in cow-calf operations of including backgrounding strategies on productivity, profitability and greenhouse gas (GHG) emissions in a representative beef cattle system from the Laprida Basin (Flooding Pampas, Argentina), applying an integrated assessment with modelling tools. The mean liveweight gain (LWG) of pure cow-calf systems was lower than systems that included backgrounding, it decreased as stocking rates (SR) increased, and it was increased when the stocker contribution (0.2 to 0.4 steer/cow rate), sales weights (steers 390 kg LW and heifers 320 kg LW) and supplementation level (>1% LW) were higher. Liveweight production and operating profits showed a curvilinear response to SR, reaching a plateau close to 0.5 cows ha−1. As expected, GHG emissions intensity (EI; kg CO2e kg−1 LW produced) was higher in pure cow-calf scenarios. If a grazing intensity (i.e. ratio between biomass removed by grazing and biomass available for grazing) beyond 0.6 was to be avoided to prevent long-term overgrazing and trade-offs among the variables assessed, the best option was to decrease SR to 0.45 cows ha−1. On such stocking rate, LWG was improved by 8% (±SD; ±3%), but LW production, operating profits, and GHG emissions intensity were reduced by 1% (±2%), 9% (±4%) and 10% (±1%), respectively, compared with 0.50 cows ha−1. The best risk-efficient combinations were depicted by backgrounding options and the variation of profit was mainly explained by prices variability (CV = 40 ± 3%) and, to a lesser extent by climate variability (CV = 11 ± 3%). Therefore, backgrounding strategies provide opportunities to farmers to increase farm productivity and profitability at the lowest risk for a given level of expected return, while reducing greenhouse gas emissions per unit of product.
Keywords: Whole farm-systems analysis; Beef cattle; Pastoral-based; Interannual climate variability; Risk assessment; Sustainability (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0308521X19304275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agisys:v:176:y:2019:i:c:s0308521x19304275
DOI: 10.1016/j.agsy.2019.102688
Access Statistics for this article
Agricultural Systems is currently edited by J.W. Hansen, P.K. Thornton and P.B.M. Berentsen
More articles in Agricultural Systems from Elsevier
Bibliographic data for series maintained by Catherine Liu ().