EconPapers    
Economics at your fingertips  
 

Forecasting tourism demand with denoised neural networks

Emmanuel Sirimal Silva, Hossein Hassani, Saeed Heravi and Xu Huang

Annals of Tourism Research, 2019, vol. 74, issue C, 134-154

Abstract: The automated Neural Network Autoregressive (NNAR) algorithm from the forecast package in R generates sub-optimal forecasts when faced with seasonal tourism demand data. We propose denoising as a means of improving the accuracy of NNAR forecasts via an application into forecasting monthly tourism demand for ten European countries. Initially, we fit NNAR models on both raw and denoised (with Singular Spectrum Analysis) tourism demand series, generate forecasts and compare the results. Thereafter, the denoised NNAR forecasts are also compared with parametric and nonparametric benchmark forecasting models. Contrary to the deseasonalising hypothesis, we find statistically significant evidence which supports the denoising hypothesis for improving the accuracy of NNAR forecasts. Thus, it is noise and not seasonality which hinders NNAR forecasting capabilities.

Keywords: Neural Networks; Singular Spectrum Analysis; Denoising; Signal extraction; Tourism demand; Europe (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0160738318301269
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:anture:v:74:y:2019:i:c:p:134-154

DOI: 10.1016/j.annals.2018.11.006

Access Statistics for this article

Annals of Tourism Research is currently edited by John Tribe

More articles in Annals of Tourism Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:anture:v:74:y:2019:i:c:p:134-154