Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology
Can-Yong Jhu,
Yih-Wen Wang,
Chia-Yuan Wen and
Chi-Min Shu
Applied Energy, 2012, vol. 100, issue C, 127-131
Abstract:
Thermal runaway hazards related to adiabatic runaway reactions in various 18650 Li-ion batteries were studied in an adiabatic calorimeter with vent sizing package 2 (VSP2). We selected two cathode types, LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2, and tested Li-ion batteries to determine the thermal runaway features. The charged 18650 Li-ion batteries were tested to evaluate the thermal hazard characteristics, such as the initial exothermic temperature (T0), self-heating rate (dT/dt), pressure rise rate (dP/dt), pressure–temperature profiles, maximum temperature (Tmax) and pressure (Pmax), which are measured by VSP2 with a customized stainless steel test can. The thermal reaction behaviors of the Li-ion battery packs were shown to be an important safety concern for energy storage systems for power supply applications. The thermal abuse trials of the adiabatic calorimetry methodology used to classify the self-reactive ratings of the various cathodes for Li-ion batteries provided the safety design considerations.
Keywords: Thermal runaway hazards; 18650 Li-ion battery; Vent sizing package 2 (VSP2); Thermal abuse trials; Adiabatic calorimetry methodology (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912004655
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:100:y:2012:i:c:p:127-131
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.05.064
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().