Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study
Zhonghao Rao,
Shuangfeng Wang and
Feifei Peng
Applied Energy, 2012, vol. 100, issue C, 303-308
Abstract:
Encapsulated phase change materials with good thermophysical and transport properties are of growing importance for heat transfer fluid in thermal energy storage systems. The presented work aims to understand the melting mechanism of nano-encapsulated phase change materials from molecular point of view. Two nanoencapsulated phase change materials models were fabricated by using SiO2 as shell material and n-octadecane as core material: one with free shell and another with constrained shell. The molecular dynamics simulation results showed that the self diffusion coefficient of n-octadecane decreased when the shell was constrained. The mobility of the n-octadecane, interaction of different n-octadecane molecules and the stretching strength of a single molecular chain were all restrained with the rigid shell. The nano-encapsulated phase change materials with free shell will increase the fluidity of core material and enhance the heat transfer of whole capsule. This study shows that the molecular dynamics simulation is an effective method for further understanding of encapsulated phase change materials.
Keywords: Encapsulated phase change materials; Molecular dynamics simulation; Self diffusion coefficient; n-Octadecane; SiO2 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912003911
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:100:y:2012:i:c:p:303-308
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.05.022
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().