EconPapers    
Economics at your fingertips  
 

Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study

Zhonghao Rao, Shuangfeng Wang and Feifei Peng

Applied Energy, 2012, vol. 100, issue C, 303-308

Abstract: Encapsulated phase change materials with good thermophysical and transport properties are of growing importance for heat transfer fluid in thermal energy storage systems. The presented work aims to understand the melting mechanism of nano-encapsulated phase change materials from molecular point of view. Two nanoencapsulated phase change materials models were fabricated by using SiO2 as shell material and n-octadecane as core material: one with free shell and another with constrained shell. The molecular dynamics simulation results showed that the self diffusion coefficient of n-octadecane decreased when the shell was constrained. The mobility of the n-octadecane, interaction of different n-octadecane molecules and the stretching strength of a single molecular chain were all restrained with the rigid shell. The nano-encapsulated phase change materials with free shell will increase the fluidity of core material and enhance the heat transfer of whole capsule. This study shows that the molecular dynamics simulation is an effective method for further understanding of encapsulated phase change materials.

Keywords: Encapsulated phase change materials; Molecular dynamics simulation; Self diffusion coefficient; n-Octadecane; SiO2 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912003911
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:100:y:2012:i:c:p:303-308

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2012.05.022

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:100:y:2012:i:c:p:303-308