Feasibility of rice straw as alternate substrate for biobutanol production
Amrita Ranjan,
Swati Khanna and
V.S. Moholkar
Applied Energy, 2013, vol. 103, issue C, 32-38
Abstract:
Biobutanol has recently emerged as a potential alternate liquid fuel for gasoline and diesel. In this work, we have studied clostridial fermentation of stress assisted-acid hydrolyzed rice straw that exhibited a typical trend of acidogenesis followed by solventogenesis. Acid hydrolysis of 5% (w/v) mixture of rice straw in water with simultaneous application of shearing stress resulted in release of 3.9% (w/v) total sugar out of which 3.1% (w/v) was reducing sugar. Glucose formed major fraction (75%) of the reducing sugar (or 2.3% w/v total sugar). Thus, essentially, 5% (w/v) of rice straw solution released nearly 46% (w/w) (i.e. 23gL−1 glucose for 50gL−1 rice straw solution) glucose. Anaerobic fermentation of rice straw hydrolyzate using Clostridium acetobutylicum NCIM 2337 resulted in production of 6.24gL−1 of acetone, 13.5gL−1 of butanol and only 0.82gL−1 of ethanol. The net consumption of substrates was as follows: glucose 12.86gL−1 (i.e. ∼55%), total reducing sugar 18.32gL−1 (∼57%) and total sugar 24.5gL−1 (∼61%). Thus, higher solvents yield and significant sugar utilization makes rice straw a potential feedstock for biofuels production.
Keywords: Biobutanol; Hydrolyzate; Lignocelluloses; Anaerobic fermentation; Bioreactor (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912007416
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:103:y:2013:i:c:p:32-38
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.10.035
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().