Heat storage properties of the cement mortar incorporated with composite phase change material
Min Li,
Zhishen Wu and
Jinmiao Tan
Applied Energy, 2013, vol. 103, issue C, 393-399
Abstract:
An experimental study is presented on the cement mortar incorporated with expanded graphite (EG)/paraffin composite phase change material (PCM). The composite PCM was prepared by absorbing paraffin into EG with vacuum absorption method. The heat storage cement mortar (HSCM) with proper mass fraction of the composite PCM was prepared. A testing device was designed for evaluating the heat storage effect of HSCM. Temperature variation and heat storage coefficient of HSCM were compared to those of the ordinary cement mortar (OCM). For a cubic with one HSCM board and a cubic with one OCM board, the maximum indoor center temperature difference is 2.2K during the heat storage and 1.5K during the heat release process. The heat storage coefficient of HSCM board is 1.74 times of that of OCM board. The results indicate that the HSCM board has good heat storage property.
Keywords: Phase change material; Graphite; Heat storage; Cement mortar (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261912006988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:103:y:2013:i:c:p:393-399
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2012.09.057
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().