Numerical analysis of an organic Rankine cycle under steady and variable heat input
Musbaudeen O. Bamgbopa and
Eray Uzgoren
Applied Energy, 2013, vol. 107, issue C, 219-228
Abstract:
This paper develops a strategy to maintain steady operation of an organic Rankine cycle (ORC) by adjusting evaporator flow rates in relation to the available thermal energy. ORC unit under investigation uses R245fa as the working fluid, for which a regression based approach was implemented to evaluate its state properties. Steady and transient models for unit’s subcomponents (pump, evaporator, expander and condenser) were developed. Heat source is considered as solar heated water between 80°C and 95°C at mass flow rates between 2kg/s and 12kg/s, while the flow rate of R245fa is ranging between 0.5kg/s and 1.5kg/s. Due to possible changes in the available thermal energy, unit’s evaporator was identified as the critical component of the ORC. Evaporator’s effectiveness was characterized as a function of inlet temperatures and mass flow rates to map steady operation scenarios for changing conditions. Steady state analysis shows that the selected ORC system is capable of producing 13–39kW power for heat inputs varying between 125kW and 367kW with maximum efficiency in the defined operating range. Subsequently, the developed steady state map is used to construct a control strategy. This strategy aims to adjust evaporator flow rates in order to achieve maximum and steady energy recovery for any given level of heat input. The unit is simulated to study its dynamic response when available thermal energy gradually or abruptly changes with and without the control strategy. It is demonstrated that adjusting flow rates not only improves the thermal efficiency but also helps maintaining the steady state operation.
Keywords: Organic Rankine cycle; R245fa; Transient heat transfer; Evaporator effectiveness; Optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913001487
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:107:y:2013:i:c:p:219-228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.02.040
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().