A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants
A. Massi Pavan,
A. Mellit,
D. De Pieri and
S.A. Kalogirou
Applied Energy, 2013, vol. 108, issue C, 392-401
Abstract:
This paper presents a comparison between two different techniques for the determination of the effect of soiling on large scale photovoltaic plants. Four Bayesian Neural Network (BNN) models have been developed in order to calculate the performance at Standard Test Conditions (STCs) of two plants installed in Southern Italy before and after a complete clean-up of their modules. The differences between the STC power before and after the clean-up represent the losses due to the soiling effect. The results obtained with the BNN models are compared with the ones calculated with a well known regression model. Although the soiling effect can have a significant impact on the PV system performance and specific models developed are applicable only to the specific location in which the testing was conducted, this study is of great importance because it suggests a procedure to be used in order to give the necessary confidence to operation and maintenance personnel in applying the right schedule of clean-ups by making the right compromise between washing cost and losses in energy production.
Keywords: Large scale photovoltaic plant; Soiling; Pollution; Maintenance; Bayesian NN; Polynomial regression (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261913002195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:108:y:2013:i:c:p:392-401
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.03.023
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().