Upscale potential and financial feasibility of a reverse electrodialysis power plant
Alexandros Daniilidis,
Rien Herber and
David A. Vermaas
Applied Energy, 2014, vol. 119, issue C, 257-265
Abstract:
Energy can be produced from mixing waters with different salinity in reverse electrodialysis (RED). Technological improvements make RED gaining momentum as a technically viable option for baseload renewable energy generation. In this paper a model is presented for three different RED applications in terms of upscale potential based on experimental data in the probabilistic software GoldSim. For a project life of 30years (including a 5year pilot phase), the economics and avoided CO2 emissions of such a power plant for three different price scenarios and three different feed solutions are examined. Subsequently an evaluation is carried out of the upscale potential, the economic break-even membrane price of a large scale RED power plant is quantified, identifying the most influential inputs through a sensitivity analysis. Furthermore, future performance and price developments are incorporated in the model and a comparison is made of a RED power plant with other conventional and renewable energy sources in terms of the Levelised Cost Of Electricity (LCOE) index. Brine applications seem to be closer to economic viability with the present state of technology and an optimistic membrane pricing scenario, but can only be upscaled to the order of 1MW. River and seawater are not yet economically attractive but have an upscale potential close to 290MW for the Dutch context. However, considering future development in membrane performance and price, the LCOE for electricity generation with river and seawater using RED is competitive to other renewable energy sources such as biomass and wind.
Keywords: Reverse electrodialysis; Financial feasibility; Salinity gradient energy; Electricity cost; LCOE (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914000142
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:119:y:2014:i:c:p:257-265
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2013.12.066
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().