EconPapers    
Economics at your fingertips  
 

Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point

O’Connor, William E., Ronald Warzoha, Rebecca Weigand, Amy S. Fleischer and Aaron P. Wemhoff

Applied Energy, 2014, vol. 132, issue C, 496-506

Abstract: Organic phase change materials (PCMs) are a popular choice for many thermal energy storage applications including solar energy, building envelope thermal barriers, and passive cooling of portable electronics. Since the extent of phase change during a heating or cooling process is dependent upon rapid thermal penetration into the PCM, accurate knowledge of the thermal diffusivity of the PCM in both solid and liquid phases is crucial. This study addresses the existing gaps in information for liquid-phase PCM properties by examining an approach that determines the best path to prediction (BPP) for the thermal diffusivity of both alkanes and unsaturated acids. Knowledge of the BPP will enable researchers to explore the influence of PCM molecular structure on bulk thermophysical properties, thereby allowing the fabrication of optimized PCMs.

Keywords: Phase change material; Statistical thermodynamics; Thermophysical properties; Differential scanning calorimetry; Transient plane source; Thermal diffusivity (search for similar items in EconPapers)
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914007272
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:132:y:2014:i:c:p:496-506

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.07.045

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:496-506