Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition
Hang Guo,
Xuan Liu,
Jian Fu Zhao,
Fang Ye and
Chong Fang Ma
Applied Energy, 2014, vol. 136, issue C, 509-518
Abstract:
Water management is important for improving the performance and stability of proton exchange membrane fuel cells (PEMFCs) for space applications. An in situ visual observation was conducted on the gas–liquid two-phase flow in the cathode channels of a PEMFC in short-term microgravity condition. The microgravity environment was supplied by a drop tower. A single serpentine flow channel with a depth of 2mm and a width of 2mm was applied as the cathode flow field. A membrane electrode assembly comprising of a Nafion 112 membrane sandwiched between gas diffusion layers was used. The anode and cathode were loaded with 1mgcm−2 platinum. The PEMFC shows a distinct operating behavior in microgravity because of the effect of gravity on the two-phase flow. At a high water production regime, cell performance is enhanced by 4.6% and the accumulated liquid water in the flow channel tends can be removed in microgravity conditions to alleviate flooding. At a low water production regime, cell performance deteriorates by 6.6% and liquid aggregation occurs in the flow channel because of the coalescence of dispersed water droplets in microgravity conditions, thus squeezing the flow channel. The operating behavior of PEMFC in microgravity conditions is different from that in normal gravity conditions. Further studies are needed on PEMFC operating characteristics and liquid management for space applications.
Keywords: Hydrogen; Microgravity; Proton exchange membrane fuel cell; Two-phase flow; Visual observation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191401006X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:136:y:2014:i:c:p:509-518
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.09.058
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().