Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination
Jinxing Long,
Ying Xu,
Tiejun Wang,
Zhengqiu Yuan,
Riyang Shu,
Qi Zhang and
Longlong Ma
Applied Energy, 2015, vol. 141, issue C, 70-79
Abstract:
Serious char formation caused by the repolymerization of unsaturated decomposition products is a considerable challenge for current lignin utilization. Here, a novel and efficient base-catalyzed depolymerization and in situ hydrogenolysis process for lignin decomposition and char elimination was proposed using the synergic catalyst of NaOH coordinated with Ru/C. In which, lignin was first depolymerized to phenolic monomer and its oligomer, and then the oligomer was further converted to more stable aliphatic alcohols simultaneously. The results showed that more than 92.5% of lignin was converted, giving 12.69% phenolic monomer, 6.12% aliphatic alcohol and less than 14.03% residual solid. This residual solid selectivity was far lower than it from the single catalyst condition. Furthermore, the products were analyzed using GC–MS, GPC, HPLC–MS and 1H NMR. The synergistic effect between depolymerization and hydrogenolysis was also investigated through comparative analysis of the feedstock, products, and the recovered lignin.
Keywords: Lignin; Depolymerization; Hydrogenolysis; Phenolic; Aliphatic alcohol (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914012823
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:141:y:2015:i:c:p:70-79
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.12.025
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().