EconPapers    
Economics at your fingertips  
 

Analyzing the process of gas production for natural gas hydrate using depressurization

Jiafei Zhao, Zihao Zhu, Yongchen Song, Weiguo Liu, Yi Zhang and Dayong Wang

Applied Energy, 2015, vol. 142, issue C, 125-134

Abstract: Natural gas hydrate is a vast energy resource with global distribution in permafrost regions and in the oceans; its sheer volume demands that it be evaluated as a potential energy source. Understanding the mechanisms of natural gas extraction from hydrate-bearing sediments is critical for the utilization of hydrate accumulations. In this work, methane hydrate dissociation was performed in three kinds of porous media at production pressures of 2.2MPa, 2.6MPa, and 3.0MPa. Results show that the methane gas production process can be divided into three main stages: free gas liberation, hydrate dissociation sustained by the sensible heat of the reservoir, and hydrate dissociation driven by ambient heat transfer. In the process of gas production, hydrate dissociation occurs simultaneously throughout the hydrate zone along the phase equilibrium curve, and then spreads radially from the outside as a result of ambient heat transfer. Hydrate reformation and ice generation always occur in the reservoir interior due to insufficient heat transfer. The use of porous media with increased thermal conductivity accelerates the gas production rate; however, it has little influence on the final percentage of gas production. Furthermore, the Stefan (Ste) number and dissociation rate constant were employed to evaluate the impact of the sensible heat of the reservoir and ambient heat transfer. Results indicate that the sensible heat of the reservoir and ambient heat transfer play a dominant role in hydrate dissociation, and that both are dependent on production pressures.

Keywords: Hydrate; Depressurization; Sensible heat; Thermal conductivity; Dissociation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (99)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914013282
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:142:y:2015:i:c:p:125-134

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.12.071

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:142:y:2015:i:c:p:125-134