EconPapers    
Economics at your fingertips  
 

Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs)

Peilun Wang, Xiang Wang, Yun Huang, Chuan Li, Zhijian Peng and Yulong Ding

Applied Energy, 2015, vol. 142, issue C, 328-336

Abstract: This paper concerns heat exchange devices with a zigzag configuration containing multi-phase change materials (m-PCMs). A two dimensional mathematical model was established to model the charging behaviour. An experimental system was built to validate the model. The modelling results agree reasonably well with the experimental data for a single PCM, establishing confidence in the model. Extensive modelling was then carried out under different conditions. The results show that the use of m-PCMs intensifies the charging process in comparison with the use of a single PCM. Given other conditions, a larger phase change temperature difference between the m-PCMs gives a more remarkable enhancement of the charging process, and the use of m-PCMs with an unequal mass ratio gives further intensification. The modelling results also show that, for a given input power, an optimal fluid velocity exists for obtaining a high rate of the melting process.

Keywords: Multi-phase change materials (m-PCMs); Heat exchange; Zigzag configuration; Process intensification; Numerical modelling; Experimental validation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914013075
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:142:y:2015:i:c:p:328-336

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2014.12.050

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:142:y:2015:i:c:p:328-336