CO2 sequestration by methanogens in activated sludge for methane production
Nazlina Haiza Mohd Yasin,
Toshinari Maeda,
Anyi Hu,
Chang-Ping Yu and
Thomas K. Wood
Applied Energy, 2015, vol. 142, issue C, 426-434
Abstract:
Carbon dioxide (CO2) is the main greenhouse gas; hence, processes are needed to remove it from the environment. Here, CO2 was used as the substrate to generate methane (CH4) by using enriched methanogens after anaerobic enrichment of waste activated sludge (WAS); therefore, we demonstrate that methanogens from WAS have significant potential for converting the greenhouse gas CO2 into the fuel methane. Methane production was found to increase 70 fold by active methanogens in the enriched methanogens culture after 3days in the presence of H2 and CO2. Throughout the process, CO2 was completely consumed after 4days of incubation in the vials after sparging with a mixture of H2 and CO2, resulting in significant biological CO2 sequestration by methanogens. Using a mixture of H2 and 13CO2, we also demonstrated that the methane produced is due to the utilization of CO2. Microbial community studies via by quantitative real time PCR (qRT-PCR) indicate the dominance of archaea in the enriched methanogens culture of WAS. Archaeal community studies of the enriched methanogens via high-throughput 16S rRNA sequencing also showed that the archaea consist mainly of hydrogenotrophic and aceticlastic methanogens such as Methanobacteriaceae, Methanospirillaceae and Methanosarcinaceae spp. which are actively grown in H2 and CO2. We envision that CO2 gas from power plants can be directed to enriched methanogens of WAS to prevent release of this greenhouse gas while generating a useful biofuel (methane) or other valuable products using this single carbon atom.
Keywords: CO2 sequestration; Methane; Waste activated sludge; Archaea; qRT-PCR; High-throughput sequencing (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261914013269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:142:y:2015:i:c:p:426-434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2014.12.069
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().