Peak shaving strategy through a solar combined cooling and power system in remote hot climate areas
A. Perdichizzi,
G. Barigozzi,
G. Franchini and
S. Ravelli
Applied Energy, 2015, vol. 143, issue C, 154-163
Abstract:
An effective combination of district cooling with electric power production in an integrated solar combined cycle is presented and evaluated. A remote area in hot climate is assumed as location to highlight the importance of peak shaving strategy in an isolated or weakly interconnected power system. Two solutions for handling peak power demand are taken into account in the present investigation. On the one hand, the integration of a Concentrated Solar Power system (CSP) with a combined cycle power plant is considered to match peak power demand on the grid. On the other hand, the adoption of a district cooling system where cooling energy is produced by absorption chillers is proposed, instead of mechanical refrigeration, to reduce and flatten the load profile.
Keywords: Combined cooling and power; Integrated solar combined cycle; Concentrating Solar Power; Absorption chiller; Peak demand (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915000367
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:143:y:2015:i:c:p:154-163
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.01.030
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().