EconPapers    
Economics at your fingertips  
 

Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy

Rang Tu, Xiao-Hua Liu and Yi Jiang

Applied Energy, 2015, vol. 145, issue C, 344 pages

Abstract: Desiccant wheels are effective dehumidification devices. The performance of desiccant dehumidification and cooling systems is examined in this paper. Based on a theoretical investigation, six kinds of systems (systems A–F) were analyzed as the system changed from being reversible to being irreversible, which sharply reduced performance. The performance of system E, which is composed of an actual desiccant wheel, an actual heat recovery exchanger, and an actual single-stage heat pump, represents the relatively high standards that actual systems can achieve. Under the designed working conditions, COP and exergy efficiency of system E were 5.0 and 18.3%, respectively. Based on the analysis of a real ventilation cycle, it was found that to improve the system’s performance, over-dehumidification should be avoided, and heat sources with low exergy destruction should be utilized. To avoid over-dehumidification, the direct evaporative cooler at the processed air side should be replaced by a sensible heat exchanger. When the electrical heater is replaced by a heat pump system, the performance of such a system can be improved, especially when pre-cooling is adopted. The proposed heat pump-driven system had similar schematic and performance characteristics as system E, with COP and exergy efficiency being 5.01 and 18.0%, respectively, under the same working conditions.

Keywords: Desiccant wheel; Reversible process; Performance improvement; Exergy destruction; Exergy efficiency and COP (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915002202
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:145:y:2015:i:c:p:331-344

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.02.043

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:145:y:2015:i:c:p:331-344