EconPapers    
Economics at your fingertips  
 

Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude

Peizheng Ma, Lin-Shu Wang and Nianhua Guo

Applied Energy, 2015, vol. 146, issue C, 84-91

Abstract: In two earlier papers we proposed a process assumption-based design method, one aim of which is the determination of the thermal requirement of a building by investigating the building functioning as a dynamic thermal system. The principal constraint of that determination is the building indoor temperature range to be no more than 2°C. In this paper we focus on the thermal requirement of maximum WWR (window-to-wall ratio) allowed by the constraint as a function of envelope U-value and ambient temperature amplitude. Seven US cities are studied to represent a range of ambient temperature amplitudes. As the window part of a building’s envelope is a prominent architectural feature of the building, WWR and its allowed maximum in terms of thermal autonomy are the signature/reflection of local ambient temperature amplitude and the variety of envelopes of building stock in each locality. Such signal characteristics are otherwise referred to as regional architecture.

Keywords: Thermally autonomous building; Window-to-wall ratio; WWR; Building envelope U-value; Ambient temperature amplitude; Process assumption-based design (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915001397
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:146:y:2015:i:c:p:84-91

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.01.103

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:146:y:2015:i:c:p:84-91