Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach
Endong Wang
Applied Energy, 2015, vol. 146, issue C, 92-103
Abstract:
This paper develops a robust multi-criteria Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) based building energy efficiency benchmarking approach. The approach is explicitly selective to address multicollinearity trap due to the subjectivity in selecting energy variables by considering cost-accuracy trade-off. It objectively weights the relative importance of individual pertinent efficiency measuring criteria using either multiple linear regression or principal component analysis contingent on meta data quality. Through this approach, building energy performance is comprehensively evaluated and optimized. Simultaneously, the significant challenges associated with conventional single-criterion benchmarking models can be avoided. Together with a clustering algorithm on a three-year panel dataset, the benchmarking case of 324 single-family dwellings demonstrated an improved robustness of the presented multi-criteria benchmarking approach over the conventional single-criterion ones.
Keywords: Benchmarking; Whole-building energy performance; Multi-criteria; TOPSIS; Objective-weighting (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915002251
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:146:y:2015:i:c:p:92-103
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.02.048
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().