Characterization of viscous biofuel sprays using digital imaging in the near field region
J.L.H.P. Sallevelt,
A.K. Pozarlik and
G. Brem
Applied Energy, 2015, vol. 147, issue C, 175 pages
Abstract:
The atomization of biodiesel, vegetable oil and glycerin has been studied in an atmospheric spray rig by using digital imaging (PDIA). Images of the spray were captured in the near field, just 18mm downstream of the atomizer, and processed to automatically determine the size of both ligaments and droplets. The effect of the spray structure in this region is of major interest for the combustion of biofuels in gas turbines. The sprays were produced by a pressure-swirl atomizer that originates from the multifuel micro gas turbine (MMGT) setup. Various injection conditions have been tested to investigate the influence of viscosity on the spray characteristics and to assess the overall performance of the atomizer. The spray measurements have been compared to combustion experiments with biodiesel and vegetable oil in the micro gas turbine at similar injection conditions. The results show that the primary breakup process rapidly deteriorates when the viscosity is increased. A higher viscosity increases the breakup length, which becomes visible at the measurement location in the form of ligaments. This effect leads to an unacceptable spray quality once the viscosity slightly exceeds the typical range for conventional gas turbine fuels. The SMD in the investigated spray region was not significantly affected by viscosity, but mainly influenced by injection pressure. The data furthermore indicate an increase in SMD with surface tension. It was found that the penetration depth of ligaments can have major impact on the combustion process, and that the droplet size is not always the critical factor responsible for efficient combustion. The measured delay in primary breakup at increased viscosity shows that pressure-swirl atomization is unsuitable for the application of pure pyrolysis oil in an unmodified gas turbine engine.
Keywords: Gas turbine; Atomization; PDIA; Shadowgraphy; Biofuels (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915001671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:147:y:2015:i:c:p:161-175
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.01.128
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().