Influence of connecting plate resistance upon LiFePO4 battery performance
Limei Wang,
Yong Cheng and
Xiuliang Zhao
Applied Energy, 2015, vol. 147, issue C, 353-360
Abstract:
The primary challenge to the commercialization of any electric vehicle is the performance management of the battery pack. The performance of the battery module is influenced by the resistance of the inter-cell connecting plates (ICCP) and the position of the battery module posts (BMP). A new battery cell model based on the Matlab–Simscape platform is developed and validated using a constant current discharge test and a pulse discharge test. Taken the ICCP as resistors, a parallel-connected battery module model (PCBMM) is established based on the battery cell model. The effect of inter-cell connecting plate resistance (ICCPR) on the battery module performance is simulated. Simulation results indicate that the ICCPR causes unevenly current flow among the battery cells. The battery cell directly connected to the BMP is the first one reaching its end-of-discharge (EOD) voltage. Also, it presents the lowest terminal voltage and state of charge (SOC) during the discharge process. The battery cell directly connected to the BMP goes into deep discharge state more easily. Therefore, it performs higher aging rate. The aging of the battery cell causes over-discharge of the adjacent battery cells. The reasonable ratio of the ICCPR to the battery ohmic internal resistance (OIR) is discussed for different average currents and different numbers of battery cells, to guarantee the maximum SOC evaluation error within a target value of 0.05.
Keywords: Connecting plate resistance; Battery module posts; Parallel-connected battery model; Battery performance; Simscape language (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915003001
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:147:y:2015:i:c:p:353-360
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.03.016
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().