Structure optimization of cathode microporous layer for direct methanol fuel cells
Guicheng Liu,
Xianan Ding,
Hongwei Zhou,
Ming Chen,
Manxiang Wang,
Zhenxuan Zhao,
Zhuang Yin and
Xindong Wang
Applied Energy, 2015, vol. 147, issue C, 396-401
Abstract:
To obtain the cathode microporous layer (CML) with high mass transfer performance and high electronic conductivity, a pore-forming technology was introduced to optimize CML microstructure for direct methanol fuel cells. In this paper, the effects of carbon material type, carbon material loading and pore-forming agent loading in CML on fuel cell performance were discussed systematically. The results indicated that the optimized CML consisted of carbon nanotubes and ammonium oxalate with the loading of 1.5 and 3.5mgcm−2 respectively. The fuel cell performance was improved by 30.3%, from 224 to 292mWcm−2 at 80°C under 0.3MPa O2. Carbon nanotube was found to be the most suitable carbon material for the CML due to its great specific surface area and small particle size, resulting in increasing the number of the hydrophobic sites and the contact area between the support and the catalyst layer. The carbon material and pore-forming agent loading directly influenced the pore distribution and the contact resistance of membrane electrode assembly. The water removal capacity and the gas mass transfer property of diffusion layer were improved by optimizing the amount of micropore and macropore structures.
Keywords: Direct methanol fuel cell; Membrane electrode assembly; Cathode microporous layer; Pore-forming agent; Mass transfer (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915003050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:147:y:2015:i:c:p:396-401
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.03.021
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().