Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique
G. Comodi,
M. Renzi,
F. Caresana and
L. Pelagalli
Applied Energy, 2015, vol. 147, issue C, 40-48
Abstract:
Microturbines (MGTs) are power generation devices showing very interesting performance in terms of low environmental impact, high-grade waste heat and very low maintenance cost. One of the main issues that affect the output of MGTs is their strong sensibility to inlet air temperature. Both in literature and in practical applications, several solutions have been applied to control the inlet air conditions and reduce the sensibility of this kind of machines to ambient conditions. One of the most interesting technology is the refrigerating vapour compression technique. This solution has already been used for medium/large GTs, but there are very limited inlet air cooling applications on MGTs and few experimental data are documented. This paper describes a test bench that has been designed to apply the direct vapour expansion technique to a 100kWe MGT and reports the power and efficiency augmentation of the machine when operating in hot summer days.
Keywords: Micro turbines; Inlet air cooling; Distributed generation; Electrical efficiency; Hot climates; Direct expansion (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915002615
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:147:y:2015:i:c:p:40-48
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.02.076
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().