Life cycle assessment of hydrogen production from underground coal gasification
Aman Verma and
Amit Kumar
Applied Energy, 2015, vol. 147, issue C, 556-568
Abstract:
Western Canada is endowed with considerable reserves of deep un-mineable coal, which can be converted to syngas by means of a gasification process called underground coal gasification (UCG). The syngas can be transformed into hydrogen (H2) through commercially available technologies employed in conventional fossil-fuel based H2 production pathways. This paper presents a data-intensive model to evaluate life cycle GHG emissions in H2 production from UCG with and without CCS. Enhanced oil recovery (EOR) was considered as a sequestration method and included in the LCA. The life cycle GHG emissions are calculated to be 0.91 and 18.00kg-CO2-eq/kg-H2 in H2 production from UCG with and without CCS, respectively. In addition, a detailed analysis of the influence of key UCG parameters, i.e., H2O-to-O2 injection ratio, ground water influx, and steam-to-carbon ratio in syngas conversion, is completed on the results. The advantage of adopting UCG–CCS technology for H2 production is realized over the predominant steam methane reforming (SMR) process; around 15.3 million tonnes of GHG emissions can be mitigated to achieve the projected SCO production rate from the bitumen upgrading in 2022. Furthermore, the sensitivity analysis showed that the life cycle GHG emissions is sensitive to the heat exchanger efficiency and the separation efficiency of the pressure swing adsorption (PSA) unit, with increasing values of these parameters causing an increase and a decrease in the magnitude of life cycle GHG emissions, respectively.
Keywords: Underground coal gasification (UCG); Life cycle assessment (LCA); Hydrogen production; Carbon capture and sequestration (CCS); GHG emissions (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915002937
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:147:y:2015:i:c:p:556-568
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.03.009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().