Reduced-order modeling and simulated annealing optimization for efficient residential building utility bill calibration
Joseph J. Robertson,
Ben J. Polly and
Jon M. Collis
Applied Energy, 2015, vol. 148, issue C, 169-177
Abstract:
This simulation study applies the general framework described in BESTEST-EX for self-testing residential building energy model calibration methods. The National Renewable Energy Laboratory’s BEopt/DOE-2.2 is used to evaluate an automated regression metamodeling-based calibration approach in the context of monthly synthetic utility data for a 1960s-era existing home in a cooling-dominated climate. The home’s model inputs are assigned probability distributions representing uncertainty ranges, pseudo-random selections are made from the uncertainty ranges to define “explicit” input values, and synthetic utility billing data are generated using the explicit input values. A central composite design is used to develop response surface statistical models for the home’s predicted energy use. Applying a gradient-based simulated annealing optimization algorithm to the statistical “metamodels”, the calibration approach systematically adjusts values of the design variables and reduces disagreement between predicted energy use and synthetic utility billing data. Various retrofit measures are applied and used to assess accuracy of retrofit savings predictions resulting from using the calibration procedure. Substituting actual BEopt/DOE-2.2 model simulations with the statistical models reduces overall calibration procedure run-time while sacrificing only a limited degree of accuracy for retrofit savings predictions.
Keywords: Model calibration; Numerical optimization; Response surface methodology; Residential building simulation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915003335
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:148:y:2015:i:c:p:169-177
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.03.049
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().