EconPapers    
Economics at your fingertips  
 

Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis

Guangyin Zhen, Xueqin Lu, Takuro Kobayashi, Yu-You Li, Kaiqin Xu and Youcai Zhao

Applied Energy, 2015, vol. 148, issue C, 78-86

Abstract: The feasibility of anaerobic co-digestion of waste activated sludge (WAS) and grass Egeria densa (E.d.) with four different WAS: E.d. ratios was evaluated for the first time under mesophilic conditions. First-order kinetic, modified Gompertz, and Cone models were employed to reveal the principle kinetics of methane-rich bioenergy production from co-digestion. The results showed that the addition of E.d. could greatly upgrade the sludge methane production, and the highest methane yield averaged 198.32±2.61mL/g VSadded for WAS: E.d. ratio of 0.7: 0.3, 18.72±0.14% higher respective to that of WAS alone (about 176.36mL/g VSadded). E.d. improved the solubilization of co-substrates and avoided the build-up of volatile fatty acids (VFAs) and free ammonia ([NH3]) and subsequent inhibition, inducing a stable digestion environment. Model simulation indicated Cone model best fitted the actual evolution of methane production, as evidenced by low Root Mean Square Prediction Error (rMSPE) and Akaike’s Information Criterion (AIC), as well as high Pearson’s correlation between the predicated and actual values. Additionally, the parameters analysis highlighted that the co-digestion with E.d. substantially promoted the hydrolysis rate (khyd) and methanogenesis potential (fd) of sludge, further explaining the increased solids removal and output of methane. This study demonstrated the sustainability and attractiveness of anaerobic co-digestion of sludge and grass E.d., providing a sound basis for cost-efficient biomass stabilization and bioenergy recovery.

Keywords: Mesophilic anaerobic co-digestion; Waste activated sludge; Egeria densa; Kinetic analysis; Renewable energy (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915003220
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:148:y:2015:i:c:p:78-86

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.03.038

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:148:y:2015:i:c:p:78-86