Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load
Yuanbin Zhao,
Fengzhong Sun,
Yan Li,
Guoqing Long and
Zhi Yang
Applied Energy, 2015, vol. 149, issue C, 225-237
Abstract:
From the view of cooling system, the natural draft dry cooling tower with vertical delta radiators (NDDCTV) under constant heat load can be studied by keeping constant water temperature drop Δtw. With computed entry water temperature tw1 as the sum of tower exit water temperature tw2 and the constant Δtw, a three-dimensional (3D) numerical model for NDDCTV under constant heat load was established. Through analyses about mesh-independence, sensitivity about crosswind profile index and comparison with published results, the accuracy and credibility of the established numerical model for NDDCTV were confirmed. The aerodynamic field around cooling deltas was analyzed at windless and crosswind conditions, so as to clarify the impacts of ambient air temperature and air inflow deviation angle θd on the performance of cooling columns. With constant heat load and uniform entry water temperature, the cooling performance of each sector was analyzed under crosswind impact. With increasing crosswind velocity vc, the cooling performance of NDDCTV under constant heat load deteriorates sharply at low vc, but varies slightly at high vc, which can be improved by air deflectors.
Keywords: Dry cooling tower; Cooling delta; Numerical simulation; Constant heat load; Crosswind (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915004213
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:149:y:2015:i:c:p:225-237
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.03.119
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().