A model calibration framework for simultaneous multi-level building energy simulation
Zheng Yang and
Burcin Becerik-Gerber
Applied Energy, 2015, vol. 149, issue C, 415-431
Abstract:
Energy simulation, the virtual representation and reproduction of energy processes for an entire building or a specific space, could assist building professionals with identifying relatively optimal energy conservation measures (ECMs). A review of current work revealed that methods for achieving simultaneous high accuracies in different levels of simulations, such as building level and zone level, have not been systematically explored, especially when there are several zones and multiple HVAC units in a building. Therefore, the objective of this paper is to introduce and validate a novel framework that can calibrate a model with high accuracies at multiple levels. In order to evaluate the performance of the calibration framework, we simulated HVAC-related energy consumption at the building level, at the ECM level and at the zone level. The simulation results were compared with the measured HVAC-related energy consumption. Our findings showed that MBE and CV (RMSE) were below 8.5% and 13.5%, respectively, for all three levels of energy simulation, demonstrating that the proposed framework could accurately simulate the building energy process at multiple levels. In addition, in order to estimate the potential energy efficiency improvements when different ECMs are implemented, the model has to be robust to the changes resulting from the building being operated under different control strategies. Mixed energy ground truths from two ECMs were used to calibrate the energy model. The results demonstrated that the model performed consistently well for both ECMs. Specific contributions of the study presented in this paper are the introduction of a novel calibration framework for multi-level simulation calibration, and improvements to the robustness of the calibrated model for different ECMs.
Keywords: Building energy simulation; Model calibration; Multi-level; Energy conservation measures (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915003323
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:149:y:2015:i:c:p:415-431
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.03.048
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().